
)-A250 018

USER'S MANUAL FOR HYPER:
A DOMAIN DECOMPOSITION

PROGRAM'
VERSION 1.0

A. LOUISE PERKINS
INSTITUTE FOR NAVAL OCEANOGRAPHY

DTI
1 MAY12.==l

92-12469 STK, , I111 111 I l~l i II l iiiI Ilil I1IW 111111 llii. -

'This work was performed under the auspices of the U. S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
No. W-7405-Eng-48 and under the auspices of the Institute for Naval
Oceanography.

Approved for public release; distribution is unlimited. Institute for
Naval Oceanography, Stennis Space Center, MS 39529-5005.

The Institute for Naval Oceanography (INO) is operated by the University
Corporation for Atmospheric Research (UCAR) under sponsorship of the Naval
Research Laboratory (NRL). Any opinions, findings, and conclusions or
recommendation expressed in this publication are those of the author(s) and do not
necessarily reflect the views of NRL.

DTIC TAB 3
utiaro'&flced -3

J 12 L I ftt I On

Aus p', b Olt, C0102

. ..ist Ya L n.C-

...... mmm I II IIm n m I~m ~~lI 't

USER'S MANUAL FOR HYPER:
A DOMAIN DECOMPOSITION PROGRAMi

Version 1.0

A. Louise Perkins
Institute for Naval Oceanography

IThis work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48 and
under the auspices of the Institute for Naval Oceanography.

Approved for public release; distribution is unlimited. Institute for Naval
Oceanography, Stennis Space Center, MS 39529-5005

ACKNOWLEDGEMENTS

I thank the National Magnetic Fusion Energy Computer Center for allowing
me the use of their network of Cray's during this code development, and the
Institute for Naval Oceanography (INO) for supporting its evolution from a stand-
alone program to a set of utility routines.

TABLE OF CONTENTS Pagew

1.0 INTRODUCTION .. 1
1.1 Purpose .. 1
1.2 Program Design Philosophy 2

2.0 ACQUIRING THE HYPER CODE 3

3.0 INITIAL CONDITIONS 3
3.1 Oceanographic Initial Conditions 4

4.0 BOUNDARY CONDITIONS 4

5.0 THEORY OF OPERATION 5
5.1 Menus .. 5

5.1.1 M enu Description 6
5.2 Data Structures .. 8
5.3 Mixed Directed-Undirected Graph 11
5.4 Inverted Graph 14
5.5 Ease of U se .. 15
5.6 Flatfile Undirected Relations 16

REFERENCES ... 17

APPENDICES

A .. 20
B .. 2 1
C 23
D .. 24
E 25

DISTRIBUTION LIST ... 26

• m m llliiiilllllmlllllllmll~i Ull~l~ i

USER'S MANUAL FOR HYPER:
A DOMAIN DECOMPOSITION PROGRAM

Version 1.0

1.0 INTRODUCTION

1.1 Purpose

This document describes the details for a set of utilities programs and
subroutines that are collectively referred to as HYPER. The document has been
prepared for use by either an end-user who wishes to setup a problem, or a
programmer who is attempting to modify the code. The author would greatly
appreciate all extensions being sent to her at the e-mail address: perkins@
jupiter.ino.ucar.edu.

The utility HYPER is designed to provide an environment for heterogeneous
domain decomposition methods. In this user's manual we describe the philosophy
behind the code, how to use the code, and the data structures used for
implementation. We also briefly discuss both the Cray-2 and SUN computers, and
the UNICOS and UNIX operating system used. Our implementation of a mixed
directed-undirected graph to represent mesh relationships' in a domain
decomposition environment combines procedural scheduling with data flow,
asynchronous, parallel communication needs, and is an interesting new feature.

Conceptually, the program can be divided into several components
(Figure 1). The three major components, integration, domain management, and
user interface, belong to distinct areas of computer science: numerical methods,
data structures, and man-machine interfaces. The user is expected to provide the
numerical methods. The user interface and all needed data structures, however, are
completely transparent to the user.

A program entitled HYPER, that this utility is derived from, was originally
developed and implemented in parallel on a Cray-2 multiprocessor using the
macrotasking facilities available with the operating system used at the National
Magnetic Fusion Energy Computer Center (NMFECC) housed at Lawrence
Livermore National Laboratory (LLNL). The NMFECC operating system
managed the shared main memory and the four processor units (PU) in tandem.
Hence, the data structures have been designed for parallel processing, although this
utility has not implemented that feature. HYPER was then ported to a UNIX
environment and rearranged as a "utility" to provide more flexibility.

I1

Integrators

Memory Management

HYPER Domain Management _f Refined Values

Data Input

T---a ControlUser Interface Data Output

Figure 1. HYPER Components

1.2 Program Design Philosophy

We develop a mixed directed-undirected graph to represent the subdomain
relationships. To optimize access speed we implement an inverted index for the
directed arcs in the graph.

The code was planned, designed, and debugged using modem software
engineering methods. The error handling follows (Aron, 1974). We avoided
modularizing where the error handling would become convoluted. Consequently,
our error handling needs only information available at the place where the error
occurs, allowing local but complete error handling. The program was modularized
based on functional cohesion. Each subroutine has a specific task to perform.
Because of the original constraint of parallelism, as well as heavy modular
communication needs, a shared memory structure is used for global data and
variables. It is the responsibility of each subroutine to work within the global
environment safely. Toward this end, each parallel subroutine is passed its own
subdomain name, S, and processor number, P, along with all grid related indices.
This plethora of information defines a separate instance of each grid. A serious
stamp coupling occurs when we pass grid relationships between routines. To
control such extravagance, utility-provided, abstract-data-type macros are used to
access global data structures.

We used the Boehm (1978) metrics for measuring software quality to guide
our implementation. The code is portable to the degree that FORTRAN is
portable: it is portable in the larger sense that it is self-contained. Due to the
modular design, it is reliable, robust, and feasible to extend and modify.

2

2.0 ACQUIRING THE HYPER CODE

The version of the program described herein is available over Internet via
anonymous ftp (user <"anonymous">, password <"anonymous">) from "jupiter.
ino.ucar.edu" (IP address 128.160.2.21). Once connected enter "cd/pub/perkins/
hyper" to arrive at the appropriate directory. There you will find the following
files:

* Readme - Read this first,
• makefile - UNIX system command file,
* hyper.input - Oceanographic data file,
* hyperl.O.f - the model code, and
* hyperl.0.h - the header include file.

If you wish to run the oceanography example, you can acquire the SPEM
model via another anonymous ftp and move to the directory pub/perkins/hyper/
oceanex. Change to this directory and retrieve all files there. If you have any
difficulty retrieving the needed routines remotely, contact:

Dr. Louise Perkins
Building 1103, Room 233
Institute for Naval Oceanography
Stennis Space Center, MS 39529
601/688-3498

3.0 INITIAL CONDITIONS

There are four initial configurations preset in HYPER. These are defined in
the subroutine SETIC (SET Initial Conditions), and they also appear in the
subroutine CONVCD (CONVergence Check of Data).

The subroutine SETIC has three modes of initializing data: 1) grid aligned
partitions; 2) angled partitions; and 3) circular partitions. The user may, of course,
provide his/her own SETIC instead. An easier approach would be to provide a
function definition, FIC, to SETIC and CONVCD.

The original domain (which is assumed to be rectangular, but could be easily
altered) is divided into tiles that are labeled as if they were array elements. For
example, the original domain might be divided into four quadrants labeled (1,1),
(1,2), (2,1), and (2,2). Tile (1,1) is located in the lower left comer of the rectangle.
The second index moves to the right while the first index moves up. Then
different values are assigned in each quadrant. There is a maximum of n such

3

divisions in each of the two spatial directions, x and y. The values for each
variable are located in the "tv" arrays. These include:

tvu - velocities in first dimension,
tvv - velocities in second dimension,
tvrho - density, and
tve - energy.

To use the cylindrical setup routine, we partition the domain into the number
of disks (NUMDISK) that we wish to tile. There is again a maximum of n tile
disks. The disks are filled in with the values from the "tv" arrays. For example,
the circle is prescribed as follows: each row is filled up to the radius of the next
disk with the appropriate values. Again, the function definition FIC could be used
to do this type of initialization. However, the author found this "visual"
initialization easier to use.

The angled initial condition is a combination of the array and cylindrical
choices. We again subdivide the domain into array-like tiles, but we then fill them
in with the circular algorithm, using a constant slope instead of a circle.

3.1 Oceanographic Initial Conditions

There is also a set of initialization routines for an oceanographic simulation.
The Semi-spectral Primitive Equation Model (SPEM) developed by Haidvogel,
et al (1991) is an example of how to connect your own integration routine into
HYPER. The initialization of SPEM is described in a document that must be
acquired separately from this document.

4.0 BOUNDARY CONDITIONS

We provide for Neumann (N), Dirichlet (D), Robbins (R), Sponged (S), and
user-provided (U) boundary conditions.

The boundary conditions are applied when a routine calls the "func-n"
subroutines (a four-sided or "Box" model called func-1, func-2, func-3, and
func-4). By convention, one is always the "top" of the "box" and numbering
proceeds clockwise.

There is a hierarchy of boundary conditions that are applied. First,
Neumann and Robbins boundaries are calculated. Then, any Dirichlet values that
need to be interpolated for refined meshes are calculated. Overlapping regions
exchange information. Then sponged outflow boundary conditions are calculated.

4

In summary:

• Neumann and Robbins Boundaries Advanced,
• Interpolate Dirichlet Values onto Refined Meshes,
• Sponge Outflow Boundaries, and
• Shared Boundaries Exchanged.

Because grids can be arbitrarily overlapping and inter-related, determining
the location and relative position of grids that overlap is complex. Overlapping
grids can be solved implicitly using Schwarz alternating boundary conditions.
However, the individual grids also have Neumann and Dirichlet or Robbins
boundary conditions. This is handled in the routine NDSS (Neumann Dirichlet
Sponged Schwarz). The data structure, IGRDES, keeps the boundary information
for all grids.

5.0 THEORY OF OPERATION

The HYPER system operates on a "run" basis. A run consists of a set of
initial conditions together with matching boundary conditions, a model or solver
task, and the run parameters. The user begins by executing the menu program
"HYPER", and choosing the run-time options desired.

5.1 Menus

The following menu discussion explains how the menu system works.

The computer system communicates with the user via menus, reports, and
question/answer dialogue. These communication tools are collectively known as
the user interface. Most information is entered through question and answer
sessions. Confirmation messages appear whenever a transaction is completed.

Defaults

Some questions have options displayed. For example: "Output to the
terminal or printer (T/P)." The first option in the list is the default response (e.g.,
the "T" above).

Menu Traversal

Movement from one menu to another is standardized. Moving through the
menu structure is called traversal. The HYPER menu structure is a tree. Each
menu in the structure can be thought of as a potential branching point. The main
menu is the root of the tree, and presents general categories for options, such as

5

boundary or initial conditions. Each option can be considered a branching point.
As the user climbs the tree, they can select any menu they need to define the
problem in any sequence.

To return to a previous menu, enter the option number "0". To exit the
menu routine, type "0" in the main menu.

5.1.1 Menu Description

HYPER's menu system begins with the main menu. Here the user is pre-
sented with a choice of performing any one of the general categories of functions
available. The general categories are described below.

HYPER Domain Management System
- Save Definitions for Future Use
- Run the Program
- Define Parallel Environment
- Choose Equations to Solve
- Define the Grids to Use
- Define Output Requirements

More specifically, below are the currently available menus.

HYPER Menu
- 1 Save
- 2 Run
- 3 Parallel
- 4 Equations
- 5 Grids
- 6 Output Options

SAVE Menu
- 1 Save Setup Information
- 2 Add Run Results to Statistical Measures
- 3 Read Previous Setup Information

PARALLEL Menu
- 1 Number of Processors to Use
- 2 Maximum Asynchronous Lag

6

EQUATIONS Menu
- 1 Known Solution Equations
- 2 Unknown Solution Equations
- 3 Choose Discretization
- 4 Artificial Viscosity Selections

KNOWN SOLUTION Menu
- 1 Constant Solution
- 2 HYPGS
- 3 2-D Heat Equation
- 4 Lagrange
- 5 HYPER

UNKNOWN SOLUTIONS Menu
- 1 HYPJAC
- 2 IGMY
- 3 BOXMG
- 4 ADVEC
- 5 ATF

SOLUTION Menu
- 1 Choose Method
- 2 Define Initial Conditions

ARTIFICIAL VISCOSITY Menu
- 1 User Supplied
- 2 Von Neumann-Richtmyer Type
- 3 Tensor Type
- 4 Real Parabolic Term
- 5 No Artificial Viscosity

GRID Menu
- 1 Enter Number of Levels to Refine
- 2 Do Not Limit Refinement Levels
- 3 Set Refinement Ratios
- 4 Domain Decomposition Method Choices

DOMAIN DECOMPOSITION CRITERIA Menu
- 1 Local Truncation Error
- 2 Relative Derivatives (RDD) Method
- 3 Absolute Derivative Decomposition
- 4 User Specified

7

OUTPUT Menu
1 Reports
2 Graphics

REPORTS Menu
- 1 Subroutine Summary
- 2 Time Summary
- 3 Options Chosen
- 4 Parallelism Report

GRAPHICAL CHOICES Menu
- 1 Choice of Output Media
- 2 Two-Dimensional Plots
- 3 Three-Dimensional Plots
- 4 Unused
- 5 Mesh Refinement Plots

5.2 Data Structures

The choice of data structures influences the parallelization, efficiency, and
the manageability of a mesh refinement program. We introduce a mixed directed-
undirected graph that combines both communication and scheduling needs. An
inverted index is maintained for the directed graph to improve code performance
and readability.

We introduce a data structure designed to work with a parallel domain
decomposition algorithm. We begin with a brief review of domain decomposition.
Then, we introduce the domain decomposition algorithm that was used to
investigate convection-diffusion equations in Perkins (1989). The mixed directed-
undirected data structure is presented. The implementation of the two cooperating
data structures involves both a directed inverted graph and a flat-file undirected
relation.

We now introduce the motivation for refined meshes. It is well known that
to refine the entire coarse mesh in space for mostly smooth fluid dynamics
modeled by hyperbolic equations would be inefficient. It would require large
amounts of memory and waste processor time in the quiescent regions. In short,
refining the entire coarse mesh is overkill. For less smooth fluid dynamics
modeled by mixed hyperbolic-parabolic explicit equations, the mesh must also be
severely refined in time, resulting in an excessive number of time steps. The small
parabolic terms describe the physical behavior within shock, internal, and
boundary layers which cannot always be represented by the reduced hyperbolic
equation. For example, when modeling shocks in gas dynamics, the Navier-Stokes
equations can be reduced to the hyperbolic Euler equations of gas dynamics which

8

admit discontinuous solutions. However, if the behavior within the shock layer is
not known a priori, and is of interest, the physical parabolic terms should appear
in the numerical model. Scroggs gives an example showing that the reduced
hyperbolic equation may place the shock in the wrong location. Alternatively, an
implicit solution on a fully refined mesh results in a very large matrix problem.
Local mesh refinement can be computationally efficient for these mixed hyperbolic-
parabolic equations when the software implementation of the domain decomposi-
tion method is efficient.

In this section we present the sequencing for one coarse time step of
magnitude Act from time tn to time tn + Act, where n indexes the discrete time
steps on the coarse mesh. Let the temporal refinement ratio from the coarse mesh
to the refined meshes be the integer r, and notate this rAjt = 6 ct, so that a
subscript "c" informs us that we are on the coarse mesh, while a subscript "f'
informs us that we are discussing one of the refined (fine) meshes.

We begin with an overview of the domain decomposition serialized
algorithm that describes the procedures we undergo.

Domain Decomposition Serialized Algorithm

Advance coarse mesh
Detect overlap of existing subdomains
DO r times

DO while overlapping fine meshes have not converged
Iteratively solve implicit equations on refined meshes
while asynchronously sending boundary information

ENDWHILE
ENDDO.
Conservatively average refined values onto coarse mesh

The corresponding data flow of this algorithm is depicted in Figure 2. The
values on the coarse mesh at time tn = nA ct are sent concurrently to both the
coarse integrator and the refinement criterion. The refinement criterion determines
which points on the coarse mesh are above the a priori threshold for insignificant
parabolic activity. These coarse mesh values may also be conditionally sent to the
Lagrange subdomains when we need to interpolate values from the coarse mesh to
any newly refined areas. These spatially refined Lagrange meshes exist from time
tn to t n + An ct. Each of these refined subdomains is provided with full boundary

conditions derived from the coarse mesh, so that they seem "independent". This
independence simplifies our mesh-based data structures for the parallel
implementation.

9

Domain Subdomain
Value Subdomains Inte ators

Coarse Boundary
Integrator 0 Cond.

'*--Data Exchanges
Overlay

Figure 2. Hyper Data Flow

Of course, overlapping meshes are not independent. Overlapping subdo-
mains must interact to ensure that the necessary data dependencies on connected
implicit regions are provided. This is accomplished with asynchronous bi-
directional data exchanges.

When all of the refined meshes have been advanced r refined time steps to
the next coarse time step, their values at time tn+I are passed to the coarse mesh
where a conservative averaging produces an aggregate solution over the entire

mesh. Let FA, F1, and JFk} P() represent the discrete operators for the aggregate
solution on the original discretized mesh K21, the solution on the coarse Eulerian
mesh Q1, and the separate solutions on each of the refined Lagrange subdomains

[92k} P(, respectively. Then the aggregate solution on the entire discretized mesh
is given by

FA I C[{Fk(nk)P) F(k2Q)],

where the operator C projects from the refined grid onto the coarse grid using the
Fk where available and Fl elsewhere.

The choice of data structures for mesh refinement is important as stressed in
Bolstad (1982) and as illustrated in Berger (1983). The data structures used
influenced the parallelization, efficiency, and ease of implementing an algorithm.
Although a tree structure is most popular for multidimensional adaptive mesh
programs, it proved too restrictive for the parallel implementation. The data struc-
ture presented here is general purpose and could be applied to other parallel
solution methods whose serial algorithm was tree based and where the siblings
must interact. It couples procedural scheduling constraints with asynchronous com-
munication needs by representing the topological structure of mesh relationships.

10

In previous work the data structures used to implement similar methods
range from simple lists to linked lists to tree structures. Bolstad (1982) discusses
linked lists for domain decomposition in detail while Berger (1983) presents tree
structures.

5.3 Mixed Directed-Undirected Graph

Each of the available processors is given a subproblem, Fk = 0, defined on
the subdomain 92k. The mesh configuration is static between the coarse-refined
time step barriers. Consider this static configuration as a graph with both directed
and undirected edges, G = (V, ED , EU), where V is the set of all meshes, ED are

directed edges that express the coarse-refined relationship, and Eu are undirected
edges that indicate overlapping refined meshes. This structure admits the
possibility of unbounded levels of refinement and multiple coarse meshes.
Although our implementation has only one coarse mesh and one level of
refinement, we implemented a more general domain decomposition data structure
for flexibility in future applications. The local uniform mesh refinement method of
Berger (1983), which requires multiple levels of refinement, and the multiple,
specialized body conforming meshes used at NASA for different portions of an
aircraft are both interesting domain decomposition techniques. We did not want to
exclude these alternate approaches from our domain decomposition data structure.

An example of a mixed directed-undirected graph is given in Figure 3. For
coarse mesh 1 with refined meshes 2, 3, and 4, mesh 2 is further refined into
meshes 5, 6, and 7; and mesh 4 is refined again using meshes 8 and 9. This
information is needed for procedural scheduling and is stored in the directed-graph
structure which is implemented using an inverted index. In the figure, the directed-
graph inverted index structure has two columns. The first column is the ordered
index of existing meshes, and the second column is a pointer to each existing
meshes original parent.

11

Directed Graph
Inverted Index

1-

2 1
3 1 Undirected Graphs
4 1

5 2 112II134_2-4
6 2 21 5-6 16-7 17-8 18-9 17-9
7 2
84
9 4

5-7 6 7 8 7 9

Figure 3. Mixed Directed-Undirected Graph

At the second level of the mixed directed-undirected graph, we see that
meshes 2 and 3, 3 and 4, and 2 and 4 overlap. This is illustrated with lines
connecting these meshes in Figure 3. These relationships are contained in the
undirected graph marked 1. At the third level we see that meshes 5 and 6, 6 and 7,
7 and 8, 8 and 9, and 7 and 9 overlap. These relationships are contained in the
undirected graph marked 2. To our knowledge, this data structure has not been
used explicitly for finite difference domain decomposition solutions before. Bell
(1983) reviewed large-scale scientific computing data structures. Concluding that
the nature of scientific computing constrains the choice of data structures, she
represents these constraints using a relational model of data--a graph. Also, the
only data structures that she found in existing codes were arrays, lists, and trees.
That is, although she chose to represent the data found in her survey as a graph, no
actual implementation represented it that way. This is because general graphs can
be expensive to build, maintain, and access. To overcome these drawbacks, we
combined the ease of accessing and managing an indexed tree with the generality
of a graph. A tree structure is used whenever possible. When not possible, and in
our implementation, this corresponds to overlapping refined meshes, which are
represented by the undirected arcs. A flat-file relation for the graph is utilized.
This scheme is feasible when the size of the individual disjoint graphs is not large.

12

The directed arcs, GD, are used to ensure that the underlying coarser meshes
have advanced and filled in the boundary conditions for the overlaid refined
meshes, as required for the Lagrangian advancement. They represent the proce-
dural connections between meshes. The undirected arcs, Gu, are used to coordinate

the asynchronous iterations on the overlapping meshes. They represent cooperat-
ing but independent meshes, and they determine the asynchronous data flow. The
combined mixed directed-undirected graph is used by a load-balancing algorithm
to schedule the subproblems on to the available processors (Perkins, 1989).

To efficiently manage the parallel advancement of the independent refined
Lagrange meshes, we relinquish coarse-mesh supervision of the refined meshes,
freeing them to execute their own tasks within parameters established by the
underlying coarse mesh at the previous coarse-refined time step barrier. The
coarse mesh creates each of its overlaid refined meshes; provides them with their
needed boundary conditions and their connectivity graph, which is one disjoint
graph from the mixed directed-undirected graph G; and tells the refined mesh the
number of time steps to the coarse-refined synchronization barrier. The coarse
mesh knows how many overlaid refined meshes were created, and it waits until all
of them have contacted it with an "all done" message packet containing the
overlaid values. Each refined mesh knows how many time steps to take, and with
which other refined meshes it must exchange data.

The parallel scheduler uses the disjoint graph structure to schedule spatially
close refined meshes onto topologically close processors. Figure 4 shows the Euler-
Lagrange synchronization graph for a three processor implementation. The coarse
mesh (DDi) is easily advanced in parallel on all available processors, without
considering the topological structure of the separate grids provided the grid overlap
always contains the domain of dependence needed by an explicit solver.

A DD K2 2
1 1

DD "\ S10Q
A 2 C1 3 1

DD2 SQ3Q

Q _I _DS__

IQ 4I
+

n 3 4

r

Figure 4. Euler-Lagrange Synchronization Graph

13

Clustering can aiso proceed in parallel on the same coarse mesh
subdivisions. In our implementation, for the problems examined in Perkins (1989),
the parallel clustering was efficient. However, our parallel clustering algorithm
can theoretically degenerate to a worse-case scenario where nothing is gained over
a serial implementation.

After all parallel clustering routines have completed, we have a global
synchronization cluster barrier, CL. This can be relaxed, but not completely
eliminated, as our worse-case scenario indicates.

Each refined mesh is then assigned to an available processor in this example.
As mentioned before, the undirected arcs are used to indicate refined mesh
dependencies. This information is used to assign processors in a sympathetic
configuration. In our example here all three refined meshes overlap, -22 with 0"3,
and Q3 and Q4. On a linear array of processors, connected pl-p2-pf-, we would
assign i2n+I to processor pn. Each overlapping array must undergo asynchronous,

bi-directional data exchanges. This activity is indicated with S'- Ui in the figure.

When all refined meshes complete r Ap time steps, the coarse-refined

synchronization barrier is crossed, and K,1~ has been calculated.

5.4 Inverted Graph

The directed graph, GD, is a reverse-linked tree that points from child-to-
parent as previously shown in Figure 3. Parent-to-child tree structures are
frequently used to monitor mesh refinement (Berger, 1983). However, it is the
child (refined mesh) which must contact the parent (coarser mesh) when it has
finished execution in a parallel implementation. In our implementation of the
directed graph, we extract these frequently used traversal paths from the data and
keep them in an index. This allows the majority of GD traversals to occur quite
rapidly. It also provides easy management of "adoption" and "joint custody."

The inverted index tree is functionally equivalent to a classically linked tree
structure up to the order of the siblings.

An example of an extracted traversal index for GD is given in Figure 5. At
the creation of each refined mesh, the underlying coarse mesh knows the identifica-
tions of all of its refined meshes. It keeps this information for each of its refined
meshes. In the figure, mesh 1 knows its children are meshes 2, 3, and 4, while
mesh 4 knows it has two children, meshes 8 and 9. As each first level refined
mesh 2, 3, or 4 reaches its respective coarse-refined synchronization barrier, it
waits for messages to be sent from each of its refined mesh children; parent-to-

14

child paths are not needed. As each refined mesh reaches the coarse-refined
synchronization barrier, it puts together a message packet of its advanced values
and looks up who its parent meshes are. It then sends the packet to the underlying
coarser parent meshes. Child-parent communication accounts for the most
frequent access to GD, so the physical structure of the inverted index reflects this.

Index
Logical Tree

Node Num. Ptr. Parent
1 0
2 1 41
3 1
4 15
5 2

Figure 5. Inverted Tree

5.5 Ease of Use

Because our refined meshes move across the coarse mesh, refined meshes
can migrate from one coarser mesh to another. The logical tree reflects the nesting
arrangement at a specific instance in time. If a refined mesh moves from one
parent mesh to another, then the child mesh (who knows its original parent) sends a
message to the previous parent, allowing it to cross their joint coarse-refined
synchronization barrier without receiving any data from the refined mesh that has
migrated, then looks up its new parent in the inverted tree, and sends its advanced
values to the new parent, the migrating child mesh.

Refined meshes can also be shared by more than one parent as they move
across the coarser mesh. This underlying structure is, then, not strictly a tree.
However, no change is required to our inverted index structure except to allow
more than one value for the parent pointer. Also, no synchronization problems
arise for the adopted parent due to this migration. The child contacts its previous
parent and informs it that it is migrating to a new parent. The new parent is also
contacted and informed that it has successfully adopted a new child mesh.

For information that is specific to each mesh, this mesh number points to the
information stored for that subdomain, such as the time step size, the number of
time steps advanced so far for this mesh, the time the mesh was created, the
number of data points in each dimension, the step size in each dimension, a pointer
to its location within the parent's data arrays, the level of the mesh's refinement, its
underlying coarse mesh, and the boundary conditions to use for that mesh.

15

5.6 Flatfile Undirected Relations

The undirected graph Gu represents sovereign relationships; no procedural
control distinctions are made between any two meshes connected by an undirected
path. Either mesh can initiate communication or decide when to advance across
the refined-refined synchronization barrier. We use these paths to represent the
bi-directional iterations (Schwarz, 1890) where either mesh can decide when to
initiate an iteration and when to advance across the refined-refined synchronization
barrier.

These undirected graphs are implemented in a flat-file relation. This is
illustrated in Figure 6. In a list, labeled "Forest of Disjoint Graphs" in the figure,
we keep a contiguous record of each disjoint graph. The length of the graph,
which includes the preface length field, is first. It is then followed by the graph
which is stored in the form shown in the table "Graph Relations". This is a
two-tuple of three-tuples. One three-tuple mesh relationship is used. It contains
the number of the mesh, the level (or depth) of the mesh within the directed tree,
and a pointer to the parent mesh. There is one two-tuple used each time any two
meshes overlap. In the figure there are two disjoint subgraphs, Gr(1) and Gr(2).
Gr(1) knows that meshes 4 and 5 overlap, and Gr(2) knows that meshes 7 and 8
overlap.

The mixed directed-undirected graph allows us to combine procedural
scheduling needs with asynchronous communication needs. Because the directed
graph is inverted it provides for liberal mesh relationships such as migration in an
efficient way. The combined structure allows us to present both the procedural
scheduling and the asynchronous communication needs in an integrated format to a
parallel scheduling routine. The scheduler can then quickly decide which
processors to use for which subproblems using heuristic algorithms. That is, we
provide our scheduler with information on data dependence together with our
scheduling constraints.

This new data structure provides efficient, readable software for domain
decomposition algorithms in a parallel environment.

16

n

Total Length = Yi=1 Len(i)

Forest of Disjoint Graphs

Len(1) graph Len(n) graph

7 Gr(l) 7 Gr(2) -1

Graph Relations

num lvl prt num lvl prt

Gr(1) 4 2 5 3 2

Gr(2) 7 3 3 8 3 3

Figure 6. Graph Structures

REFERENCES

Aron, J.D. (1974). The Program Development Process-The Individual
Programmer, Addison-Wesley, 162-164.

Babuska, I., J. Chandra, and J.E. Flaherty (1983). Adaptive Computational
Methods for Partial Differential Equations, SIAM, Philadelphia, PA,
(0 89871 191 6).

Bell, J.L. (1983). Data Structures For Scientific Simulation Programs, Ph.D.
Thesis, University of Colorado.

Berger, M.J. (1982). Adaptive Mesh Refinement for Hyperbolic Partial
Differential Equations, Ph.D. Dissertation, Stanford University.

17

Berger, M.J. (1983). Data Structures for Adaptive Mesh Refinement. In: Adaptive
Computational Methods for Partial Differential Equations, SLAM,
Philadelphia, PA (0 89871 191 6).

Berger, M.J. and P. Colella. Local Adaptive Mesh Refinement for Shock
Hydrodynamics, to appear in J. Comput. Phys., 82, 64-84.

Boehm, B.W., J.R. Brown, and M. Lipow (1978). Quantitative Evaluation of
Software Quality, Proceedings, 2nd International Conference on Software
Engineering, IEEE Computer Society, Long Beach CA (78 67758), 286-299.

Bolstad, J.H. (1982). An Adaptive Finite Difference Method for Hyperbolic
Systems in One Space Dimension, Lawrence Berkeley Lab Report
LBL 13287.

Chin, R.C.Y., G.W. Hedstrom, J.R. McGraw, and F.A. Howes (1985). Parallel
Computation of Multiple-Scale Problems, Lawrence Livermore National
Laboratory Report UCRL-92007, Rev. 1.

Haidvogel, D., J. Wilkin, and R. Young (1989). A Semi-Spectral Primitive
Equation Ocean Circulation Model Using Vertical Sigma and Orthogonal
Curvilinear Horizontal Coordinates, J. Comput. Phys., 94, 151-185.

Hedstrom, Kate (1990). User's Manual for a Semi-Spectral Primitive Equation
Regional Ocean-circulation Model Version 3.0, Institute for Naval
Oceanography, SP-1, 82 pp.

Horowitz, E.J. (1987). QN3D: A Three Dimensional Quasi Neutral Hybrid
Particle in Cell Code with Applications to the Tilt Mode Instability in Field
Reversed Configurations, Ph.D. Thesis, UC Davis Report UCRL-53808.

ISSC (1985). DISSPLA Display Integrated Software System and Plotting
Language User's Manual, Version 10.0, San Diego, CA.

Leibovich, S. and A.R. Seebass (1974). Nonlinear Waves, Cornell University
Press, Ithaca, NY.

Meisel, W.S. (1972). Computer-Oriented Approaches to Pattern Recognition,
Academic Press, 145-146.

Oran, E.S. and J.P. Boris (1987). Numerical Simulation of Reactive Flow, Elsevier
Science Publishing Co., New York (0-444-01251-6).

18

Perkins, A.L. (1988). Tailoring Domain Decomposition to the Network Structure
for Parallel Processing Of Fluid Dynamics, Lawrence Livermore National
Laboratory Report UCID-21609.

Perkins, A.L. (1989). Parallel Heterogeneous Mesh Refinement For Multi-
dimensional Convection-Diffusion Equations Using an Euler-Lagrange
Method, Ph.D. Thesis, UCRL-53950.

Schlichting, H. (1979). Boundary Layer Theory, McGraw Hill Book Company,
New York, NY, 47-69 (0 07 055334 3).

Schwarz, H.A. (1890). Ueber Linen Grenzuibergang Durch Alternirendes
Verfahren, Gesammelte Mathematische Abhandlungen 2, Springer Verlag,
Berlin.

Scroggs, J.S. (1988). The Solution of a Parabolic Partial Differential Equation via
Domain Decomposition: The Synthesis of Asymptotic and Numerical
Analysis, Ph.D. Thesis, University of Illinois.

Smoller, J. (1983). Shock Waves and Reaction-Diffusion Equations, Springer
Verlag, 255 (0 387 90752 1).

Thompson, J.F., Z.U.A. Warsi, and C.W. Mastin (1985). Numerical Grid
Generation Foundations and Applications, North Holland, Amsterdam,
367-369 (0 444 00985 X).

19

APPENDIX A

Grid Attributes

Each subdomain has a mesh number that is a "pointer" to the information
kept about that subdomain, such as the time step size, the number of time steps
advanced so far for this mesh, the time the mesh was created, the number of data
points in each dimension, the step size in each dimension, a pointer to its location
within the parent's data arrays, the level of the mesh's refinement, its underlying
coarse mesh, and the boundary conditions to use for that mesh.

The data values are kept in a two dimensional heterogeneous array currently
defined in the include file "grids.inc". When a subdomain is needed, this grid is
activated and the needed initial conditions and boundary values are filled in. The
resulting refined mesh is then computationally independent of its underlying coarse
mesh up to its next synchronization barrier.

20

APPENDIX B

Data Structures

The following are all the data structures used, their layouts, and their
owners.

Table 1. Data Structure Overview, Part I

STRUCTURE DIMENSION PURPOSE OWNER

igrdes (35,ngrids) Grid Attribute List

isbgc sibling graph for overlap ADV

mngmt I - width
2 - length grid management array ALLOC,
3 - DALL
4-

igra Directed Graph Relations ADV

gn (1-20) grid number

iw Load Balancing List DECOVL

newgin grid to add P

iext positional array
0 not strict extension
1 strict extension

itcrr(2,2) (1,1) inner iterations for lvl 1
(2,1) inner iterations for lvl 2
(1,2) average over "n" items
(2,2) average

nnewg list of existing grids DECG

Map position in NEWG G

mrgey (20) Closest Grid Overlap

iptr (20,20) relates each grid
(i,j)=0 no overlap
1 overlap

21

Table 2. Data Structure Overview, Part II

newg (10,20) grids
1 loc:ulc
2 loc:llc
3 loc:ulr
4 loc:urr
5 width
6 length
7 level
8 parent pointer
9 mark field
10 mark field

sec (100,6) timing values
1-100 routine names
1 running total
2 total parallel time
3
4 total parallel time
5 maximum parallel time
6 colnt of parallel calls

icntr (100) times routine executed

Details

The igrdes array keeps the information on all currently existing grids.
There are currently a maximum of ngrids grids, but this can be altered by
changing the parameter statement in the include file.

22

APPENDIX C

Parallelization

A list of all routines scheduled with strtask and waittask (the parallel start
and synchronize routines on the Crays) follows. The STUPIF flag indicates
whether the serial or parallel call will be invoked.

Table 3. Parallel Scheduling Overview

Routine Parallel Task

adv solvm
clus grads
rdds rdd
padvn adv
ppadv padvn
xcute ppadv
solvm solvr
grads grad

23

APPENDIX D

File Interfaces

This is a list of all files used and their purpose.

Table 4. File Structure and Usage

Owner Routine File Structure

Major timip 1 - used
0 - unused
A(9) - identifier

errf (input) number of entries
message
disposition: 0 - report
1 - report and correct
2 - delete

menf number of menus
list of menus: length of menu in order,
menu name in-order means

24

APPENDIX E

Error Handling

The subroutine error handles all error processing. It has two states:
initialize and process. When parameter INIT is not zero, the error messages are
read in from file ERRF. This file has format:

• number of messages (13)
* message (one line max)
* disposition of message

where:

Table 5. Error Handling Summary

Disposition Flag Action

0 warning
1 error, but caller will handle it
2 error, terminate immediately

25

DISTRIBUTION LIST

1. Office of Naval Research 10. Head, Ocean Sensing and
Code 1242 (10 copies) Prediction Division
800 North Quincy Street NRL (Code 320)
Arlington, VA 22217-5000 Stennis Space Center, MS 39529

2. Director, Atmospheric Sciences 11. Library (3 copies)
Directorate NRL (Code 125)

NRL West (Code 400) Stennis Space Center, MS 39529
Monterey, CA 93943-5000

12. Dr. William Holland
3. Commanding Officer National Center for Atmospheric

Fleet Numerical Oceanography Office Research
Monterey, CA 93943-5000 P.O. Box 3000

Boulder, CO 80307
4. Commanding Officer

Naval Oceanographic Office 13. UCAR Library
Stennis Space Center, MS 39529 P.O. Box 3000

Boulder, CO 80307
5. Technical Director

CNOC (Code OOT) 14. Dr. Albert W. Green, Jr.
Stennis Space Center, MS 39529 NRL, Code 330

Building 1105
6. Officer In Charge Stennis Space Center, MS 39529

NRL (Code 100)
Stennis Space Center, MS 39529 15. Professor George L. Mellor

Princeton University
7. Technical Director P.O. Box CN710, Sayre Hall

NRL (Code 110) Princeton, NJ 08544-0710
Stennis Space Center, MS 39529

16. Dr. John R. Apel
8. Director, Ocean Sciences Applied Physics Laboratory

Directorate Johns Hopkins University
NRL (Code 300) Laurel, MD 20723
Stennis Space Center, MS 39529

9. Dr. A. D. Kirwan, Jr. 17. Dr. J. Dana Thompson
College of Sciences NRL, Code 320
Dept. of Oceanography Stennis Space Center, MS 39529
Old Dominion University
Norfolk, VA 23529-0276

26

18. Dr. William J. Schmitz 21. Dr. Richard W. Miksad, Chairman
Dept. of Physical Oceanography Dept. of Aerospace Engineering
Woods Hole Oceanographic and Engineering Mechanics

Institution The University of Texas at Austin
Woods Hole, MA 02543 Austin, TX 78712-1085

19. Dr. Edward L. Barker 22. Professor Allan R. Robinson
NRL, Code 440 Center for Earth &
Monterey, CA 93943-5006 Planetary Physics

Harvard University, Pierce Hall
20. Professor Otis B. Brown 29 Oxford Street, Room 100D

Division of Meteorology & Cambridge, MA 02138
Physical Oceanography

RSMAS, University of Miami 23. Dr. Ron McPherson, Director
4600 Rickenbacker Causeway National Meteorological Center
Miami, FL 33149 World Weather Building

5200 Auth Road
Camp Springs, MD 20746

27

REPOT DCUMNTATON AGEForm Appred
REPOR DOCMENTAION AGE0M8 No. 0704-0188

IC reporting burden for this collection of Information is estimated to average 1 hour per response, Including the time for reviewing Instru lions. searching existing data sources.
ering and maintaining the data needed, and completing and reviewing the collect ion of Informnation. Send comments regarding this burden estimate or any other aspect of
collection of Information. Including suggestions for reducing this burden. to Washinion Headquarters Services, Directorate for Iftormation Operations an Reports 1215 Jefferson
a Highway, Suite 1204. Arlington, VA 22-202-4302Z and to the Office of Managemenf an~d Budget. Paperwork Reduction Project (0704-0118), Washington, DC 20503.

gency Use Only (Leave blank). 2. Report Date. 3. Report Type and Dates Covered.

I March 1992 Special Report

itle and Subtitle. 5. Funding Numbers.

Iser's Manual for HYPER: A Domain Decomposition Program Ptiogam Element No. 6 115 3N
Tersion 1.0

___ Project No. R310300
kuthor(s).

Task No 801
k.* Louise Perkins

Accession Na DN250022

-lerforming Organization Name(s) and Address(es). 8. Performing Organization
Report Number.

Institute for Naval Oceanography
Building 1103, Room 233 SP-4
Stennis Space Center, MS 39529-5005

Sponsoring /Monitoring Agency Name(s) and Address(es). 10. SponsoringlMonltoring Agency
Report Number.

Naval Research Laboratory
Stennis Space Center, MS 39529-5004

Supplementary Notes.

a. Distribution/Availability Statement. 12b. Distribution Code.

Approved for public release; distribution is unlimited.

Abstract (Maximum 200 words).

This document describes the details for a set of utilities programs and sub-
routines that are collectively referred to as HYPER. The utility HYPER is designed
to provide an environment for heterogeneous domain decomposition methods. In this
user's manual we describe the philosophy behind the code, how to use the code, and
the data structures used for implementation.

Subject Terms. 15. Number of Pages.

(U) INO (U) NAOPS (U) SPEM (U) PRINCETON (UJ) NOGUES

(U) MODEL (U) PREDICTION (U) HARVARD (U) DART (U) HYPER 16. Price Code.

Security Classification 18. Security Classification 19. Security Classification 20. Limitation of Abstract.
of Report. of This Page. of Abstract.
Unclassified Unclassified Unclassified SAR

7S4O-O-28O-550O Standard Form 298 (Rev. 2-M9
P'Y1Ctbd tv ANSI Sid, Z39-16
29e- r0

